722 research outputs found

    Market Transparency and Competition Policy.

    Get PDF
    We survey some of the literature on the effects of improved market transparency on competition in oligopoly. Generally, improved transparency from the perspective of firms makes detection of deviations from tacitly collusive agreements easier, thus facilitating oligopolistic coordination. On the other hand, improved transparency from the perspective of consumers, particularly in terms of easier comparability of goods characteristics, has ambiguous effects: More elastic demands make deviations from collusive prices more profitable to firms in the short run, but they also make future retaliation by rivals more severe. Which of these forces will dominate in a dynamic oligopoly competition is shown to depend on the markets-specifics. In light of the theoretical results, we discuss the likely effects on inter-firm competition of information exchange and online trading institutions as well as the American and European competition policy attitude towards market transparency.market transparency; repeated oligopoly; secret price-cutting; customer switching

    Market Transparency: A Mixed Blessing?

    Get PDF
    Antitrust practitioners and consumers protectionists often argue that market transparency should be improved to allow consumers to shop around for bargain prices thereby putting pressure on oligopolists´ pricing. We model how transparency, interpreted as the comparability from the point of view of consumers of the characteristics of goods and services, affects the outcome of a repeated oligopoly. Improved transparency may make consumers switch suppliers more easily. This increases the static temptation of individual firms to deviate from tacitly agreed prices, but at the same time the future punishment may become more severe. When the number of firms is small, the "optimal degree of transparency" may not be perfect transparency, unless the oligopolists may rely on sophisticated, optimal punishment strategies. When the number of firms grows larger, the optimal degree of transparency increases, and from some point onward perfect transparency is optimal. We discuss the various policy implications of these results.market transparency; customer switching; repeated oligopoly

    A Simple Ultrasound Based Classification Algorithm Allows Differentiation of Benign from Malignant Breast Lesions by Using Only Quantitative Parameters.

    Get PDF
    PURPOSE: We hypothesized that different quantitative ultrasound (US) parameters may be used as complementary diagnostic criteria and aimed to develop a simple classification algorithm to distinguish benign from malignant breast lesions and aid in the decision to perform biopsy or not. PROCEDURES: One hundred twenty-four patients, each with one biopsy-proven, sonographically evident breast lesion, were included in this prospective, IRB-approved study. Each lesion was examined with B-mode US, Color/Power Doppler US and elastography (Acoustic Radiation Force Impulse-ARFI). Different quantitative parameters were recorded for each technique, including pulsatility (PI) and resistive Index (RI) for Doppler US and lesion maximum, intermediate, and minimum shear wave velocity (SWVmax, SWVinterm, and SWVmin) as well as lesion-to-fat SWV ratio for ARFI. Receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic performance of each quantitative parameter. Classification analysis was performed using the exhaustive chi-squared automatic interaction detection method. Results include the probability for malignancy for every descriptor combination in the classification algorithm. RESULTS: Sixty-five lesions were malignant and 59 benign. Out of all quantitative indices, maximum SWV (SWVmax), and RI were included in the classification algorithm, which showed a depth of three ramifications (SWVmax ≤ or > 3.16; if SWVmax ≤ 3.16 then RI ≤ 0.66, 0.66-0.77 or > 0.77; if RI ≤ 0.66 then SWVmax ≤ or > 2.71). The classification algorithm leads to an AUC of 0.887 (95 % CI 0.818-0.937, p < 0.0001), a sensitivity of 98.46 % (95 % CI 91.7-100 %), and a specificity of 61.02 % (95 % CI 47.4-73.5 %). By applying the proposed algorithm, a false-positive biopsy could have been avoided in 61 % of the cases. CONCLUSIONS: A simple classification algorithm incorporating two quantitative US parameters (SWVmax and RI) shows a high diagnostic performance, being able to accurately differentiate benign from malignant breast lesions and lower the number of unnecessary breast biopsies in up to 60 % of all cases, avoiding any subjective interpretation bias

    Virtual Touch IQ elastography reduces unnecessary breast biopsies by applying quantitative "rule-in" and "rule-out" threshold values.

    Get PDF
    Our purpose was to evaluate Virtual Touch IQ (VTIQ) elastography and identify quantitative "rule-in" and "rule-out" thresholds for the probability of malignancy, which can help avoid unnecessary breast biopsies. 189 patients with 196 sonographically evident lesions were included in this retrospective, IRB-approved study. Quantitative VTIQ images of each lesion measuring the respective maximum Shear Wave Velocity (SWV) were obtained. Paired and unpaired, non-parametric statistics were applied for comparisons as appropriate. ROC-curve analysis was used to analyse the diagnostic performance of VTIQ and to specify "rule-in" and "rule-out" thresholds for the probability of malignancy. The standard of reference was either histopathology or follow-up stability for >24 months. 84 lesions were malignant and 112 benign. Median SWV of benign lesions was significantly lower than that of malignant lesions (p 98% with a concomitant significant (p = 0.032) reduction in false positive cases of almost 15%, whereas a "rule-in" threshold of 6.5 m/s suggested a probability of malignancy of >95%. In conclusion, VTIQ elastography accurately differentiates malignant from benign breast lesions. The application of quantitative "rule-in" and "rule-out" thresholds is feasible and allows reduction of unnecessary benign breast biopsies by almost 15%

    A Re-Examination of the Taxonomic Boundaries of \u3cem\u3eSymphysia\u3c/em\u3e (Ericaceae)

    Get PDF
    DNA sequence data were generated for the nuclear ITS region for Symphysia racemosa and for 26 additional Vaccinieae representing 12 sections in the genus Vaccinium plus one species from each of five additional segregate genera. Our focus is on the placement of S. racemosa relative to Vaccinium sensu scricto and Vaccinium sect. Oreades (represented by V. poasanum). Maximum parsimony analysis of 608 bp of nrITS region suggests that S. racemosa and V. poasanum form a well-supported clade in spite of substantial morphological divergence. Futhermore, this clade is a sister group to a clade consisting of all segregate genera examined. These molecular results led us to undertake a morphological cladistic analysis of all of the other Central American green-flowered taxa. We suggest that the genus Symphysia should be expanded to encompass these 15 taxa, despite the lack of phylogenetic resolution within this group. This will necessitate eight new combinations, via. Symphysia almedae (= V. almedae), Symphysia costaricensis (= V. costaricense), Symphysia jefensis (= V. jefense), Symphysia orosiensis (= V. orosiense), Symphysia ovata (= Lateropora ovata), Symphysia perardua (= V. santafeënsis), Symphysia poasana (= Vaccinium poasanum), Symphysia santafeënsis (= L. santafeënsis), and Symphysia tubulifera (= L. tubulifera)

    Breast lesion detection and characterization with contrast-enhanced magnetic resonance imaging: Prospective randomized intraindividual comparison of gadoterate meglumine (0.15 mmol/kg) and gadobenate dimeglumine (0.075 mmol/kg) at 3T.

    Get PDF
    BACKGROUND: Contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast is highly sensitive for breast cancer detection. Multichannel coils and 3T scanners can increase signal, spatial, and temporal resolution. In addition, the T1 -reduction effect of a gadolinium-based contrast agent (GBCA) is higher at 3T. Thus, it might be possible to reduce the dose of GBCA at 3T without losing diagnostic information. PURPOSE: To compare a three-quarter (0.075 mmol/kg) dose of the high-relaxivity GBCA gadobenate dimeglumine, with a 1.5-fold higher than on-label dose (0.15 mmol/kg) of gadoterate meglumine for breast lesion detection and characterization at 3T CE-MRI. STUDY TYPE: Prospective, randomized, intraindividual comparative study. POPULATION: Eligible were patients with imaging abnormalities (BI-RADS 0, 4, 5) on conventional imaging. Each patient underwent two examinations, 24-72 hours apart, one with 0.075 mmol/kg gadobenate and the other with 0.15 mmol/kg gadoterate administered in a randomized order. In all, 109 patients were prospectively recruited. FIELD STRENGTH/SEQUENCE: 3T MRI with a standard breast protocol (dynamic-CE, T2 w-TSE, STIR-T2 w, DWI). ASSESSMENT: Histopathology was the standard of reference. Three blinded, off-site breast radiologists evaluated the examinations using the BI-RADS lexicon. STATISTICAL TESTS: Lesion detection, sensitivity, specificity, and diagnostic accuracy were calculated per-lesion and per-region, and compared by univariate and multivariate analysis (Generalized Estimating Equations, GEE). RESULTS: Five patients were excluded, leaving 104 women with 142 histologically verified breast lesions (109 malignant, 33 benign) available for evaluation. Lesion detection with gadobenate (84.5-88.7%) was not inferior to gadoterate (84.5-90.8%) (P ≥ 0.165). At per-region analysis, gadobenate demonstrated higher specificity (96.4-98.7% vs. 92.6-97.3%, P ≤ 0.007) and accuracy (96.3-97.8% vs. 93.6-96.1%, P ≤ 0.001) compared with gadoterate. Multivariate analysis demonstrated superior, reader-independent diagnostic accuracy with gadobenate (odds ratio = 1.7, P < 0.001 using GEE). DATA CONCLUSION: A 0.075 mmol/kg dose of the high-relaxivity contrast agent gadobenate was not inferior to a 0.15 mmol/kg dose of gadoterate for breast lesion detection. Gadobenate allowed increased specificity and accuracy. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1157-1165

    Microstructural breast tissue characterization: A head-to-head comparison of Diffusion Weighted Imaging and Acoustic Radiation Force Impulse elastography with clinical implications

    Get PDF
    Abstract Purpose Head-to-head comparison of Diffusion Weighted Imaging (DWI) and Acoustic Radiation Force Impulse (ARFI) elastography regarding the characterization of breast lesions in an assessment setting. Method Patients undergoing an ultrasound examination including ARFI and an MRI protocol including DWI for the characterization of a BI-RADS 3–5 breast lesion between 06/2013 and 10/2016 were eligible for inclusion in this retrospective, IRB-approved study. 60 patients (30–84 years, median 50) with a median lesion size of 16 mm (range 5–55 mm) were included. The maximum shear wave velocity (SWVmax) and mean apparent diffusion coefficient (ADCmean) for each lesion were retrospectively evaluated by a radiologist experienced in the technique. Histology was the reference standard. Diagnostic performances of ARFI and DWI were assessed using ROC curve analysis. Spearman's rank correlation coefficient and multivariate logistic regression were used to investigate the independence of both tests regarding their diagnostic information to distinguish benign from malignant lesions. Results Corresponding areas under the ROC curve for differentiation of benign (n = 16) and malignant (n = 49) lesions were 0.822 (ARFI) and 0.871 (DWI, p-value = 0.48). SWVmax and ADCmean values showed a significant negative correlation (ρ = −0.501, p-value Conclusion Significant correlation between quantitative findings of ARFI and DWI in breast lesions exists. Thus, ARFI provides similar diagnostic information as a DWI-including protocol of an additional "problem-solving" MRI for the characterization of a sonographically evident breast lesion, improving the immediate patient management in the assessment setting

    Diagnostic performance of breast tumor tissue selection in diffusion weighted imaging:A systematic review and meta-analysis

    Get PDF
    Background Several methods for tumor delineation are used in literature on breast diffusion weighted imaging (DWI) to measure the apparent diffusion coefficient (ADC). However, in the process of reaching consensus on breast DWI scanning protocol, image analysis and interpretation, still no standardized optimal breast tumor tissue selection (BTTS) method exists. Therefore, the purpose of this study is to assess the impact of BTTS methods on ADC in the discrimination of benign from malignant breast lesions in DWI in terms of sensitivity, specificity and area under the curve (AUC). Methods and findings In this systematic review and meta-analysis, adhering to the PRISMA statement, 61 studies, with 65 study subsets, in females with benign or malignant primary breast lesions (6291 lesions) were assessed. Studies on DWI, quantified by ADC, scanned on 1.5 and 3.0 Tesla and using b-values 0/50 and >= 800 s/mm(2) were included. PubMed and EMBASE were searched for studies up to 23-10-2019 (n = 2897). Data were pooled based on four BTTS methods (by definition of measured region of interest, ROI): BTTS1: whole breast tumor tissue selection, BTTS2: subtracted whole breast tumor tissue selection, BTTS3: circular breast tumor tissue selection and BTTS4: lowest diffusion breast tumor tissue selection. BTTS methods 2 and 3 excluded necrotic, cystic and hemorrhagic areas. Pooled sensitivity, specificity and AUC of the BTTS methods were calculated. Heterogeneity was explored using the inconsistency index (I-2) and considering covariables: field strength, lowest b-value, image of BTTS selection, pre-or post-contrast DWI, slice thickness and ADC threshold. Pooled sensitivity, specificity and AUC were: 0.82 (0.72-0.89), 0.79 (0.65-0.89), 0.88 (0.85-0.90) for BTTS1; 0.91 (0.89-0.93), 0.84 (0.80-0.87), 0.94 (0.91-0.96) for BTTS2; 0.89 (0.86-0.92), 0.90 (0.85-0.93), 0.95 (0.93-0.96) for BTTS3 and 0.90 (0.86-0.93), 0.84 (0.81-0.87), 0.86 (0.82-0.88) for BTTS4, respectively. Significant heterogeneity was found between studies (I-2 = 95). Conclusions None of the breast tissue selection (BTTS) methodologies outperformed in differentiating benign from malignant breast lesions. The high heterogeneity of ADC data acquisition demands further standardization, such as DWI acquisition parameters and tumor tissue selection to substantially increase the reliability of DWI of the breast

    4D perfusion CT of prostate cancer for image-guided radiotherapy planning: A proof of concept study.

    Get PDF
    PURPOSE: Advanced forms of prostate cancer (PCa) radiotherapy with either external beam therapy or brachytherapy delivery techniques aim for a focal boost and thus require accurate lesion localization and lesion segmentation for subsequent treatment planning. This study prospectively evaluated dynamic contrast-enhanced computed tomography (DCE-CT) for the detection of prostate cancer lesions in the peripheral zone (PZ) using qualitative and quantitative image analysis compared to multiparametric magnet resonance imaging (mpMRI) of the prostate. METHODS: With local ethics committee approval, 14 patients (mean age, 67 years; range, 57-78 years; PSA, mean 8.1 ng/ml; range, 3.5-26.0) underwent DCE-CT, as well as mpMRI of the prostate, including standard T2, diffusion-weighted imaging (DWI), and DCE-MRI sequences followed by transrectal in-bore MRI-guided prostate biopsy. Maximum intensity projections (MIP) and DCE-CT perfusion parameters (CTP) were compared between healthy and malignant tissue. Two radiologists independently rated image quality and the tumor lesion delineation quality of PCa using a five-point ordinal scale. MIP and CTP were compared using visual grading characteristics (VGC) and receiver operating characteristics (ROC)/area under the curve (AUC) analysis. RESULTS: The PCa detection rate ranged between 57 to 79% for the two readers for DCE-CT and was 92% for DCE-MRI. DCE-CT perfusion parameters in PCa tissue in the PZ were significantly different compared to regular prostate tissue and benign lesions. Image quality and lesion visibility were comparable between DCE-CT and DCE-MRI (VGC: AUC 0.612 and 0.651, p>0.05). CONCLUSION: Our preliminary results suggest that it is feasible to use DCE-CT for identification and visualization, and subsequent segmentation for focal radiotherapy approaches to PCa
    corecore